Innovations in ADC Technology Platform with Legumain-Cleavable KSP-Inhibitor Payloads Adaptable to Various Aspects of Cancer Biology

Hans-Georg Lerchen¹, Anne-Sophie Rebstock¹, Mareike Wiedmann¹, Tibor Schomber¹, Beatrix Stelte-Ludwig¹, Amy J. Johnson², Raquel Izumi², Ahmed Hamdy² ¹Vincerx Pharma GmbH, Monheim, Germany; ²Vincerx Pharma Inc., Palo Alto, CA, USA

INTRODUCTION

- We have developed a novel technology platform VersAptxTM with tailored solutions for ADCs and SMDCs with intracellular and extracellular cleavage options. The specificity of our platform lies on increasing safety by using tumor-specific enzymes, eg, neutrophil elastase or legumain, for payload release.
- Key features of the ADC technology consist of: (a) kinesin spindle protein inhibitors (KSPi) as a novel payload class, (b) a unique linker selectively cleaved by legumain, and (c) a CellTrapper[®] modification of the KSPi payload to reduce membrane permeability and provide accumulation in tumor cells to increase efficacy and safety^{1,2,3}. Our most advanced ADC, VIP943, is targeting CD123 for the treatment of AML and MDS and is currently in a Phase 1 clinical trial (NCT06034275)². Here we show the extension and applicability of the ADC platform in combination with various antibodies addressing different solid tumor targets.

• Legumain – KSPi has the potential to improve the efficacy of TROP2 and HER2 ADCs.

Brand Name	Substance/ Vehicle	DAR	Linker	Payload	NCI N87 IC ₅₀ (M)	Fold- Improvement
	Isotype-ADC	5.6	Legumain	KSPi	>1.0E-06	
Trodelvy®	Sacituzumab govitecan	7.6	CL2A	SN38	5.93E-09	1
	Sacituzumab- Legumain-KSPi	5.7	Legumain	KSPi	2.90E-10	20
ENHERTU ®	fam-Trastuzumab- Deruxtecan	8.0	Cathepsin B	Dxd	9.62E-10	1
	Trastuzumab- Legumain-KSPi	8.4	Legumain	KSPi	1.24E-10	8

METHODS

- The in vitro cytotoxicity of the ADCs and respective payloads was tested in a panel of cancer cell lines as shown in the tables after a 72h continuous exposure using MTT assays (ATCC) IC50 values were determined as the concentration of compound required for 50% inhibition of cell viability.
- HaCaT cells—immortalized human keratinocytes—were treated with EGFR-ADC. After a 72h continuous exposure, the samples were evaluated in a standard cytotoxicity assay as described above.
- Cysteine coupling of maleimide-modified payload-linker precursors to partially reduced antibodies was performed in PBS buffer at pH 7.2. Subsequent ring-opening of amidomethyl-succinimides was performed by buffer exchange to PBS buffer at pH 8 and subsequent stirring overnight
- De-conjugation was investigated after incubation of 1 mg/mL ADC in a de-conjugation buffer (150 mM Tris[hydroxymethyl]aminomethane + 10 mM N-acetylcysteine adjusted to pH 8). At defined timepoints, aliquots (25 μ L) of the reaction mixture were denatured and reduced. Loaded light chain area and total light chain area were measured using RP-HPLC.
- For the detection of permeable and non-permeable metabolites, HT29-Meso cells were grown in culture medium and incubated with Meso-A2DC 6. After 3, 24, 48 and 78h supernatant and lysate were collected. Aliquots of supernatants and lysates were taken for analytical testing using an Agilent 1290 HPLC applying MS/MS and analyzed for the presence of metabolites by LCMS.
- To study the antitumor efficacy of ADCs in vivo, immunocompromised female NMRI nu/nu mice were subcutaneously inoculated with human ovarian cancer cells (SKOV-3). Tumors High degree of homogeneity and efficiency of ring-opening demonstrated by were allowed to establish before assigning the animals to different groups by stratified mass spectrometry. randomization. Tumor area and body weight were assessed at least twice weekly.

RESULTS

Payload-linker optimization increases selectivity for tumor over healthy cells and potentially overcomes transporter-mediated drug resistance

1a: Linker with low legumain challenge (fast conversion 1b: Linker with high legumain challenge (slow conversion)

Effector chemistry	mAb	Legumain challenge	Payload profile	DAR	NCI-H292 tumor IC ₅₀ [nM]	HaCaT skin IC₅₀ [nM]	Selectivity factor
1a	Cetuximab	low	KSPi+CellTrapper	6.4	0.01	0.11	11
1b	Cetuximab	high	KSPi+CellTrapper	5.0	0.02	1.27	52
Payload	reference		KSPi permeable		0.03	0.02	0.57

Table 1. Cytotoxicity of ADCs against NCI-H292 tumor and HACAT skin cells depending on the legumain-cleavable linker

• To further increase selectivity of tumor compared to healthy tissue, we tuned Homogenous ADC **3a**-DAR8 with trastuzumab is highly potent and superior to its the cleavable linker of a cetuximab-ADC **1a** for a higher challenge of legumainmediated release (1b) with slower conversion to the payload. New ADC analog **3a** with stochastic coupling against NCI-N87 cells due to higher DAR. **1b** showed significantly improved selectivity for tumor cells versus HaCaT skin No de-conjugation with ring-opened KSPi ADC **3a**-DAR8 in contrast to ENHERTU. cells compared to the standard legumain cleavable ADC 1a (52-fold selectivity for **1b** compared to 11-fold for **1a** while keeping equipotency.

Payload Profile			•	HO O HO
	$ \begin{array}{c} & & \\ & & $	H N H	1a: R =	
			2a: R = H	

Effector chemistry	mAb	Linker challenge	Payload profile	DAR	JIMT-1 IC ₅₀ [nM]
ENHERTU	Trastuzumab	cathepsin low	DxD Permeable	8	>1000
1a	Trastuzumab	legumain low	KSPi + CellTrapper	5.4	4.7
2a	Trastuzumab	legumain low	KSPi permeable	3.4	750

Table 2. Cytotoxicity of ADCs against JIMT-1 cells depending on linker and released metabolite

• A trastuzumab-ADC using a KSPi payload with the CellTrapper **1a** shows low nanomolar potency against JIMT-1 cells resistant to trastuzumab deruxtecan and thus may overcome resistance. An increased potency was not observed with an ADC **2a** releasing a permeable KSPi without CellTrapper.

Antibody Attachment

Figure 3. A) Homogeneity of Cys-coupled ADCs with different mAbs and subsequent hydrolysis of succinimide

• Synthesis of homogenous ADCs with subsequent ring-opening of amidomethylsuccinimides can be achieved under mild conditions by stirring overnight at pH 8.

Homogenous and potent DAR 8 ADCs without significant de-conjugation

Effector chemistry	mAb	Linker	Payload	DAR	NCI-N87 [nM]
1a	Trastuzumab	Legumain	KSPi / CellTrapper	8.4	0.12
3a-stochastic	Trastuzumab	Legumain	KSPi / CellTrapper	3.3	0.65
3a -DAR8	Trastuzumab	Legumain	KSPi / CellTrapper	7.8	0.04
ENHERTU	Trastuzumab	Cathepsin	DxD	~8	1.6

Table 3. Cytotoxicity of trastuzumab ADCs against NCI-N87 cell

Figure 4: % area of loaded light chain (L1) relative to total light chain area (SL) during deconjugation for trastuzumab-3a-DAR8 ADC and ENHERTU[®] (trastuzumab deruxtecan)

Antibody 2-Drug Conjugates (A2DCs) for Treatment of Solid Tumors

ADC	p	ADC 5	ADCs: Delivery of either permeable or non-permeable paylo				
	A2DC 6	P np	A2DCs:	Delivery of two diffe	rent payloads with a sing	gle mAb	
Target	Cell line	AD	C 4	ADC 5	A2DC 6	Payload	

larget		permeable payload IC ₅₀ [nM] / (DAR)	non-permeable payload IC ₅₀ [nM] / (DAR)	permeable + non-permeable IC ₅₀ [nM] / (DAR)	Permeable IC ₅₀ [nM]
HER-2	KPL4	0.2 (5.2)	0.07 (3.7)	0.04 (2.5x2)	0.3
TWEAK-R	NCI-H292	0.4 (4.5)	0.08 (3.2)	0.1 (2.0x2)	0.1
Mesothelin	HT29-Meso	1.7 (5.5)	<mark>500</mark> (3.6)	0.8 (3.5x2)	2.0
CXCR5	REC1	<mark>600</mark> (4.3)	0.01 (3.6)	0.003 (1.9x2)	0.3

Table 4. Potency of ADCs and A2DCs against different targets against respective target-expressing cell lines

HER-2 and TWEAKR-KSP-ADCs (NCI-H292 and KPL4):

Slightly higher potency of ADC **5** providing a non-permeable metabolite (**5**>**4**) Mesothelin-KSP-ADCs (HT29-Meso+):

Major contribution of permeable metabolite to ADC potency (4>>5) • CXCR5-KSP-ADCs (REC-1):

Major contribution of non-permeable metabolite to ADC potency (5>>4) A2DC 6 shows the highest potency independent of the individual target

Figure 5. Detection of permeable and non-permeable metabolite of Mesothelin-A2DC 6 in lysate and supernatant of HT29 Meso cells

- Non-permeable metabolite significantly increases in the lysate up to 72h
- No metabolite is found in the supernatant above detection limit of $1 \mu g/L$
- **Permeable metabolite** detected in lower concentrations intracellularly
- Increasing concentrations found in the supernatant

In vivo efficacy of stochastic and homogenous KSPi ADCs in comparison to ENHERTU in the ovarian SKOV-3 CDX model

Effector chemistry	mAb	Payload	Linker	Attachment	DAR
1a	Trastuzumab	KSPi / CellTrapper	legumain/low	K random	8.4
1a	Isotype	KSPi / CellTrapper	legumain/low	K random	5.6
1b	Trastuzumab	KSPi / CellTrapper	legumain/high	K random	5.5
3a- DAR8	Trastuzumab	KSPi / CellTrapper	legumain/low	C homogenous	7.5
ENHERTU	Trastuzumab	DxD	Cathepsin	C homogenous	~8

Table 5. ADC composition and DAR

1a-Trastuzumab 10 mg/kg i.v. QW 1b-Trastuzumab 10 mg/kg i.v. QW

- 3a-DAR8-Trastuzumab 10 mg/kg i.v. QW
- Enhertu 10 mg/kg i.v. QW

Figure 5. In vivo efficacy of ADCs in HER2 expressing SKOV-3 CDX model

- Homogenous cysteine-linked ADC **3a-DAR8** with trastuzumab as well as the stochastic lysine-linked ADCs **1a** and **1b** are highly potent with once weekly dosing in the HER2-expressing SKOV-3 CDX model comparable to ENHERTU and selective versus isotype control
- Body weight loss of ≤3% for all treatment groups indicates good tolerability.

CONCLUSIONS

The VersAptx technology platform provides ADCs with high activity in solid tumors and offers multiple options for a tailored design to address the respective target biology. Herein we provided examples that include:

- Legumain-KSPi delivers improved cytotoxicity compared to established effector chemistries on HER2 and TROP2 targeting antibodies. Combined with the improved safety profile of the linker-payload this has the potential to increase the therapeutic window of the ADCs.
- Tuning the linker peptide for a higher challenge of legumain cleavage further increases selectivity of EGFR-targeted ADCs for solid tumor cells over healthy cells while retaining the high potency.
- Tuning the physicochemical profile of the payload with the CellTrapper moiety allows for accumulation in tumor cells and may overcome transporter-mediated drug resistance.
- Homogenous cysteine-linked ADCs with DAR ~8 can be provided with different antibodies and linkers and show high potency. Hydrolysis of succinimides under mild conditions after ADC coupling avoids de-conjugation of DAR8 ADCs.
- A2DCs against various targets combine different payload profiles and show the highest in vitro potency compared to the corresponding two ADCs independent of the individual target.
- ADCs with CellTrapper-modified KSPi attached to trastuzumab via different linkers are highly potent with excellent tolerability in the SKOV-3 model comparable with ENHERTU.

REFERENCES

- 1. Lerchen et al; Bioconjugate Chem. 2020, 31, 1893
- 2. Kirchhoff et al; Cancers 2020, 12, 3464 3. Sommer at al; Oncolmmunology 2022, VOL. 11, e2037216

ACKNOWLEDGEMENTS

We thank A. DiBetta, B. König, C. Siefert, K. Reimer, K. Gräwinger for excellent technical assistance under the supervision of J. Köbberling. We furthermore thank C. Mahlert and K. Kappauf for providing analytical data and for performing the ADC stability study. We also thank G. Siemeister, U. Litzenburger and their teams for performing the in vitro and in vivo xenograft studies, respectively.

