

July 2021

## Safe Harbor Statement

No representations or warranties, express or implied are given in, or in respect of, this presentation. To the fullest extent permitted by law in no circumstances will Vincerx, Inc. ("Vincerx" or the "Company") or any of its subsidiaries, stockholders, affiliates, representatives, partners, directors, officers, employees, advisers or agents be responsible or liable for any direct, indirect or consequential loss or loss of profit arising from the use of this presentation, its contents, its omissions, reliance on the information contained within it, or on opinions communicated in relation thereto or otherwise arising in connection therewith. Industry and market data used in this presentation have been obtained from third-party industry publications and sources as well as from research reports prepared for other purposes. Vincerx has not independently verified the data obtained from these sources and cannot assure you of the data's accuracy or completeness. This data is subject to change. In addition, this presentation does not purport to be all-inclusive or to contain all of the information that may be required to make a full analysis of Vincerx. Viewers of this presentation should each make their own evaluation of Vincerx and of the relevance and adequacy of the information and should make such other investigations as they deem necessary.

This presentation includes certain statements that are not historical facts but are forward-looking statements for within the meaning of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995. Forward-looking statements generally are accompanied by words such as "believe," "may," "will," "estimate," "continue," "anticipate," "intend," "expect," "should," "would," "plan," "predict," "potential," "seem," "seek," "future," "outlook," and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to: statements regarding estimates and other financial and performance metrics; projections of market opportunity and expectations and average cost per patient; the Company's mission and business strategy; preclinical and clinical development plan; expected product candidate pipeline and timing; timing of various business milestones, including preclinical and clinical trials and regulatory approval; expected impact and benefits of the Company's PTEFb platform and bioconjugation platform; capital requirements and expected cash burn; expected use of proceeds; and the Company's ability to obtain and maintain intellectual property protection. These statements are based on various assumptions and on the current expectations of the Company's management and are not predictions of actual performance. These forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on as a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions. These forward looking statements are subject to a number of risks and uncertainties, including: general economic, financial, legal, political and business conditions and changes in domestic and foreign markets; the potential effects of the COVID-19 pandemic; risks associated with preclinical or clinical development conducted prior to the Company's in-licensing; the Company's ability to realize the anticipated benefits of the business combination; risks related to the rollout of the Company's business and the timing of expected business milestones; changes in the assumptions underlying the Company's expectations regarding its future business or business model; the Company's ability to develop and commercialize product candidates; the availability of capital; and the effects of competition on the Company's future business. If the risks materialize or assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. There may be additional risks that the Company presently does not know or that it currently believes are immaterial that could also cause actual results to differ from those contained in the forward-looking statements. These forward-looking statements speak as of the date hereof, and the Company disclaims any obligation to update these forward-looking statements.

#### **Trademarks**

This presentation contains trademarks, service marks, trade names and copyrights of Vincerx and other companies, which are the property of their respective owners.



# OUR VISION

We aspire to conquer cancer by addressing the unmet medical needs of our patients with paradigm-shifting therapeutics



## **Vincerx Highlights**



### **MANAGEMENT TEAM**

- Cohesive, accomplished management team
- Highly engaged scientific advisory board and chair
- Proven track record of successful drug development & approvals, company creation, fundraising and value creation



### **ASSETS**

#### Clinical small molecule:

Highly selective PTEFb
[CDK9] inhibitors (oral and IV)
in Phase 1; signs of clinical
activity in double-hit DLBCL

# Preclinical bioconjugation platform:

- SMDC for solid tumors
- CXCR5 ADC for B-cell malignancies
- CD123 ADC for AML



### **BUSINESS STRATEGY**

- Develop oncology therapies to address unmet patient needs with accelerated approval potential
- Bayer support in the start-up process
- Develop each asset to POC and optimize commercial value of each asset



## INNOVATIVE PROPRIETARY PLATFORMS

- Modular bioconjugation platform
- Small Molecule Drug Conjugate (SMDC) for solid tumors
- Next generation ADC with novel linker and warhead



## Management Team with Proven Track Record



AHMED HAMDY, MD CEO



RAQUEL IZUMI, PhD COO



TOM THOMAS, JD CLO



STUART HWANG, PhD CBO



ALEX SEELENBERGER, MBA CFO



HERMES GARBAN, MD CMO



XIAOMING ZHANG, PhD CTO



HANS-GEORG LERCHEN PhD CSO



BEATRIX STELTE-LUDWIG PhD EVP Biology



AMY JOHNSON, PhD VP Medical Affairs



MELANIE FRIGAULT, PhD VP Translational Medicine



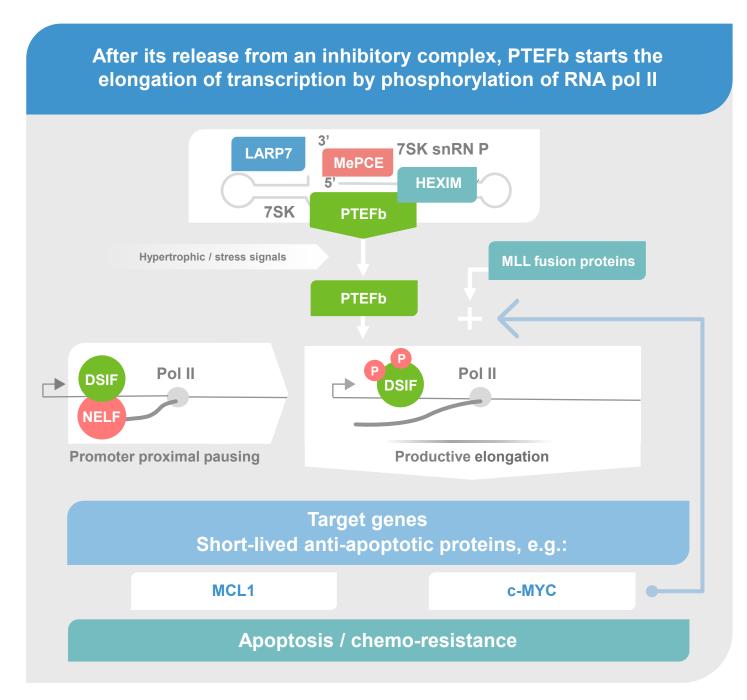
XIN HUANG, PhD VP Biostatistics



# **Vincerx Pipeline**

|                | PROGRAM             | MECHANISM<br>(Potential)                             | DISCOVERY CMC PHASE 1 Phase 2 | INDICATIONS                                                                                                                            | Upcoming<br>Milestones                 |
|----------------|---------------------|------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| PTEFb          | VIP152              | CDK9 inhibitor (IV)<br>Best in Class                 |                               | Lymphomas (e.g., DHL, MCL, transformed FL)  Solid tumors (e.g., Ovarian, TNBC, NEPC, tumor agnostic mt-MYC)  Leukemias (e.g., CLL, RS) | Multiple<br>Phase 2 studies<br>2H 2022 |
|                | VIP217              | CDK9 inhibitor (PO)  Best in Class                   |                               | TRANSCRIPTIONALLY ADDICTED TUMORS                                                                                                      | IND<br>2024                            |
| ation          | VIP236              | $α_{\rm v}$ β $_{\rm 3}$ -CPT SMDC<br>First in Class |                               | MULTIPLE SOLID TUMORS                                                                                                                  | IND<br>1H 2022                         |
| Bioconjugation | VIP943              | Anti-CD123 + KSPi ADC<br>Best in Class               |                               | LEUKEMIAS AND MDS                                                                                                                      | IND<br>2H 2023                         |
| Bioc           | VIP924              | Anti-CXCR5 + KSPi ADC  Best in Class                 |                               | B-CELL MALIGNANCIES                                                                                                                    | IND<br>1H 2024                         |
|                | Vincerx<br>Platform | TBD                                                  |                               | TBD                                                                                                                                    | TBD                                    |

ADC = antibody-drug conjugate; CLL = chronic lymphocytic leukemia; CRPC-NE = castration-resistant prostate cancer – neuroendocrine; DHL = double-hit lymphoma; IND = Investigational New Drug Application; IV = intravenous; MCL = mantle cell lymphoma; MDS = myelodysplastic syndromes; NHL = nonHodgkin lymphoma; PO = oral; PTEFb = positive transcription elongation factor b; RS = Richter syndrome, SMDC= small molecule drug conjugate; TBD = to be determined; TNBC = triple negative breast cancer




# PTEFb PROGRAM

VIP152 IV (Phase 1) VIP217 Oral (Discovery)



## PTEFb: A Novel Target for Oncology



Original figure by David Price and licensed under conditions of a GNU Free Documentation License, with modifications by Bayer AG and further modifications by Vincerx, Inc. Permission is granted to copy, distribute and/or modify this figure under the terms of the GNU Free Documentation License, Version 1.3.

## PTEFb [CDK9]

- Positive transcription elongation factor beta is a key regulator of transcription through phosphorylation of RNA polymerase II
- A key target to address transcriptional addiction in cancer
- Inhibition causes rapid depletion of short-lived mRNA transcripts of known oncogenes eg, MCL1 and MYC

### **Role of MCL1**

- Drives tumor growth and resistance to apoptosis in various heme and solid tumor entities
- Potential PD biomarker: Induction of apoptosis
- Inhibitors currently in Phase 1

### Role of MYC

- Aberrations like translocation, amplification and overexpression may lead to MYC dependency in oncogenesis
- Frequently (>40%) observed in heme and solid tumor indications
- Difficult to target



# **CDK9** is a Clinically Validated Target

| <b>VIP152</b><br>Vincerx |                                               | <b>Dinaciclib</b><br>Merck           | Alvocidib (Flavopiridol) Tolero |                                                 |                                       |
|--------------------------|-----------------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------------|---------------------------------------|
| Patients                 | Double hit DLBCL<br>[MYC driven]              | r/r CLL<br>[MCL1 driven]             | r/r CLL<br>[MCL1 driven]        | Untreated<br>AML                                | r/r AML, MCL1<br>dependent            |
| Treatment                | VIP152 monotherapy                            | Dinaciclib monotherapy vs ofatumumab | Alvocidib monotherapy           | Alvocidib + cytarabine<br>+ mitoxantrone vs 7+3 | Alvocidib + cytarabine + mitoxantrone |
| Trial                    | Phase 1/1b dose escalation and dose expansion | Randomized Phase 3 (stopped early)   | Two Phase 2's                   | Randomized Phase 2                              | Phase 2                               |
| <b>D</b>                 | ORR: 29% (2/7), both                          | Dinaciclib ORR: 40%<br>(8/20)        | Study 1<br>ORR: 54% (34/64)     | Alvo/cy/mit CR:<br>70% (76/109)                 | CR/CRi:                               |
| Response                 | PET-negative CRs                              | Ofatumumab ORR: 8% (2/24)            | Study 2<br>ORR: 25% (41/164)    | 7+3 CR:<br>46% (26/56)                          | 57% (13/23)                           |
| <b>D</b> 1 '11'4         |                                               | Dinaciclib mPFS of 13.7 mo           | Study 1: mPFS of 8.6 mo         | No difference                                   | mDoR of 8.5 mo                        |
| Durability               | 2.3 to 3.6 years  Ofatumumab mPFS  of 5.9 mo  | Study 2: mPFS of 7.6 mo              | in survival                     | for patients achieving CR/CRi                   |                                       |



## VIP152 is the Most Selective CDK9 Inhibitor in the Clinic

| Programs                 | VIP152<br>Vincerx                                  | <b>Atuveciclib</b> Vincerx | <b>AZD4573</b><br>AZ | <b>KB-0742</b> Kronos | <b>Dinaciclib</b> Merck         | Fadraciclib<br>Cyclacel       | Alvocidib<br>(Flavopiridol)<br>Tolero | <b>Voruciclib</b><br>MEI Pharma   |
|--------------------------|----------------------------------------------------|----------------------------|----------------------|-----------------------|---------------------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Selectivity              | CDK9                                               | CDK9                       | CDK1/9               | CDK9                  | CDK1/2/5/9                      | CDK2/3/5/9                    | Pan CDK                               | Pan CDK                           |
| Development<br>Stage     | P1                                                 | -                          | P1                   | P1                    | P3 Mono<br>P2 Combo             | P1                            | P2                                    | P1 mono<br>and<br>combo BCL2      |
| Type of tumor            | Hematologic<br>& Solid tumors                      | -                          | Hematologic          | Solid tumors          | CLL stopped Solid combo with IO | AML, CLL, ALL<br>Solid tumors | AML/MDS Combos                        | B-cell<br>malignancies<br>and AML |
| IC <sub>50</sub> on CDK9 | 3 nM <sup>1</sup> [ATP]: 0.01 mM  4 nM [ATP]: 2 mM | 13 nM²                     | 14 nM <sup>4</sup>   | 6nM <sup>6</sup>      | 13 nM³                          | 26 nM <sup>5</sup>            | 22nM <sup>6</sup>                     | 1 nM <sup>7</sup>                 |
| Half life                | 4h                                                 | 2-3h                       | <3h                  | -                     | 3h                              | ~1h                           | 2-4h                                  | 30h                               |
| Route of Admin           | IV                                                 | Oral                       | IV                   | Oral                  | IV                              | Oral & IV                     | IV                                    | Oral                              |

<sup>1.</sup> Lücking AACR 2017; 2. Lücking Chem Med Chem 2017; 3. Wells Nat Commun 2020; 4. Cidado Clin Cancer Res 2020; 5. Frame PloS ONE 2020 6. Day AACR 2021; 7. Dey Sci Rep 2017



## VIP152 Highly Selective and Potent CDK9 Inhibitor

| Assay                                  | VIP152 |
|----------------------------------------|--------|
| IC <sub>50</sub> CDK9 [nM]<br>low ATP  | 3      |
| IC <sub>50</sub> CDK9 [nM]<br>high ATP | 4      |

High potency is independent of [ATP]

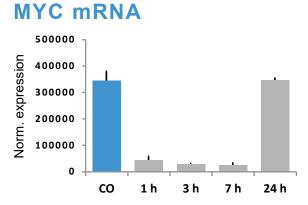
| Kinase            | <b>Kd</b> [nM]<br>@ DiscoverRx | <b>IC<sub>50</sub></b> [nM]<br>@ Millipore |
|-------------------|--------------------------------|--------------------------------------------|
| CDK9              | 1.3                            | 13**                                       |
| CDK1              | n.a.                           | 192                                        |
| CDK2              | 710                            | 158                                        |
| CDK3              | 540                            | 318                                        |
| CDK4-<br>cyclinD1 | 120                            | n.d.                                       |
| CDK4-<br>cyclinD3 | 68                             | n.d.                                       |
| CDK5              | 4900                           | 286                                        |
| CDK6              | n.a.                           | 1048                                       |
| CDK7              | 24*                            | >10000                                     |
| CDK8              | 25000                          | n.d.                                       |
| CDK11             | not active                     | n.d.                                       |

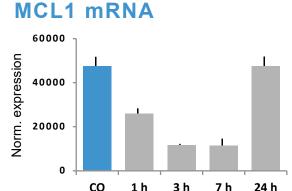
## Activity against all non-CDK kinases with <50x higher KDs

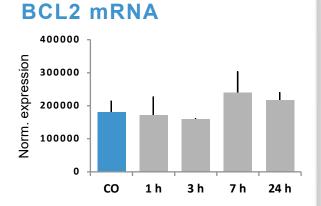
| Kinase | Activity [nM] |
|--------|---------------|
| CDK9   | 1.3           |
| GSK3a  | 7.4           |
| IRAK1  | 61            |

High selectivity over other CDKs, incl CDK2

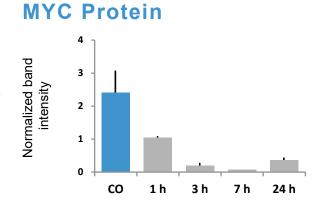
Favorable non-CDK kinase selectivity profile





<sup>\*</sup> No cyclin co-expression

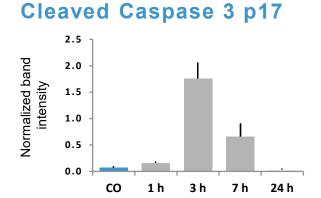

<sup>\*\*</sup> Probably lower limit of quantification

## VIP152 MoA Transiently Inhibits the Transcription of MYC and MCL1

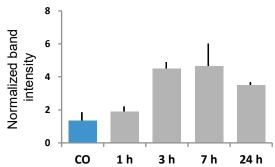

Reduction of MYC & MCL1 mRNA levels








Durable reduction of MYC protein levels




In vivo MoA in JJN3 multiple myeloma xenografts in mice upon a single dose of 15 mg/kg VIP152 IV

Induction of apoptosis



Cleaved PARP





## VIP152 (IV) - Clinical Trial Design & Status

Two Phase 1 clinical trials

## FIRST-IN-HUMAN STUDY (17496; NCT02635672)

Dose escalation (N=31)

MTD

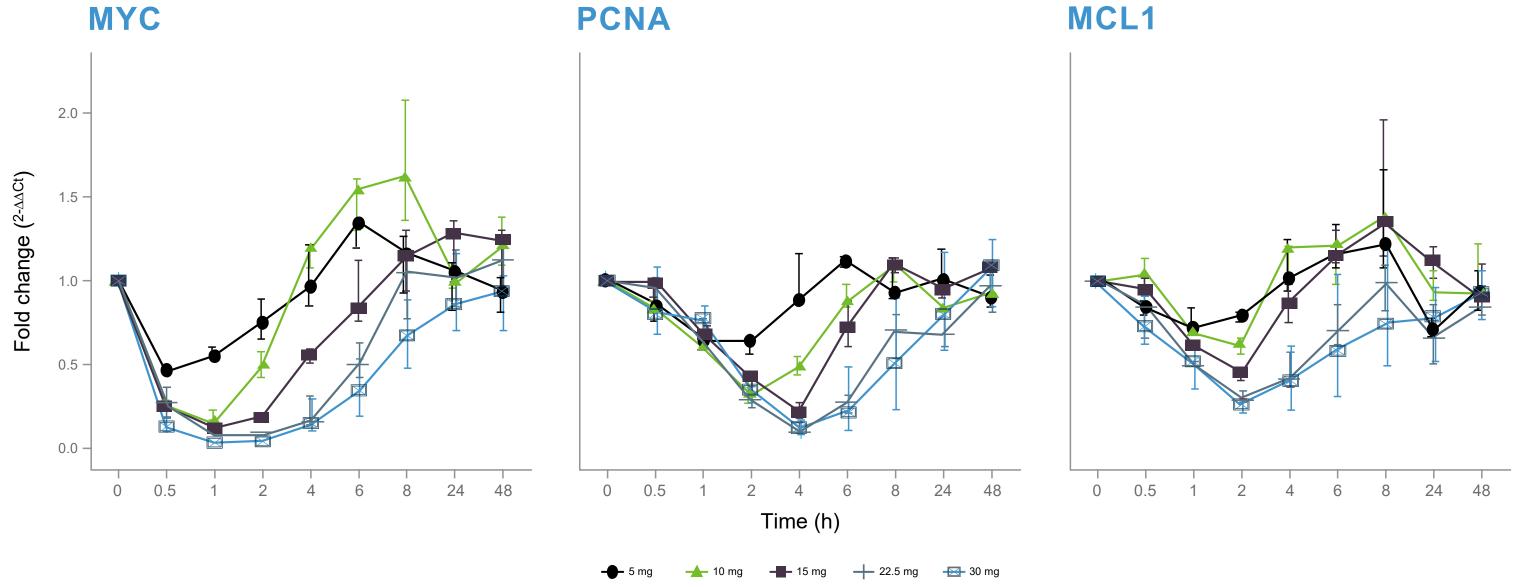
Expansion cohort (ongoing; N=6)

- Once weekly IV; 30-min infusion
- 21-day cycles
- No biomarker selection patient population (ie, all-comer advanced cancer)

- At recommended Phase 2 dose of 30 mg
- Double-hit DLBCL

## **AML study** (18117; NCT02745743)

Dose escalation (N=21)


Completed

- Once weekly IV; 30-min infusion
- 21-day cycles
- No biomarker selection in patients with AML



# VIP152 Pharmacodynamic Activity in Patient Samples

PD biomarker assessment: mRNA expression in whole blood, cycle 1, day 1 Inhibition of MYC, MCL1 and cell proliferation (PCNA)





# **Favorable Safety Profile**

Neutropenia manageable; Long-term CRs highlight tolerability profile

| Adverse Events (>15%) | Grade 1 | Grade 2 | Grade 3 | Grade 4 | <b>All</b><br>(n=31) |
|-----------------------|---------|---------|---------|---------|----------------------|
| Nausea                | 17 (55) | 9 (29)  | 0 (0)   | 0 (0)   | 26 (84)              |
| Vomiting              | 15 (48) | 5 (16)  | 0 (0)   | 0 (0)   | 20 (65)              |
| Anemia                | 6 (19)  | 5 (16)  | 3 (10)  | 0 (0)   | 14 (45)              |
| Neutropenia           | 0 (0)   | 3 (10)  | 5 (16)  | 4 (13)  | 12 (39)              |
| Fatigue               | 2 (6)   | 8 (26)  | 0 (0)   | 0 (0)   | 10 (32)              |
| Diarrhea              | 8 (26)  | 1 (3)   | 0 (0)   | 0 (0)   | 9 (29)               |
| Constipation          | 4 (13)  | 2 (6)   | 0 (0)   | 0 (0)   | 6 (19)               |
| Thrombocytopenia      | 4 (13)  | 2 (6)   | 0 (0)   | 0 (0)   | 6 (19)               |
| Abdominal pain        | 0 (0)   | 2 (6)   | 3 (10)  | 0 (0)   | 5 (16)               |
| Anxiety               | 4 (13)  | 1 (3)   | 0 (0)   | 0 (0)   | 5 (16)               |
| Fever                 | 4 (13)  | 0 (0)   | 1 (3)   | 0 (0)   | 5 (16)               |

No patients withdrew due to toxicity



## Early Signs of Monotherapy Efficacy in Phase 1 with VIP152

Dose escalation trial (solid tumors and NHL)

- 31 patients, ≥3 prior systemic chemotherapies in 97% of patients
- No biomarker selection

Early clinical signs of efficacy in DH-DLBCL

- 1 patient with DH-DLBCL in dose escalation achieved a PET-negative CR\*
- DH-DLBCL patients have MYC rearrangements and either BCL2 or BCL6 rearrangements

Expansion cohort ongoing in DH-DLBCL

 1/6 patients in the expansion cohort achieved a PET-negative CR\*

Disease control observed in heavily pretreated solid tumor patients (1 pancreatic cancer and 1 salivary gland cancer pt)

Patients evaluable for efficacy in Phase 1 (n=31) + expansion cohort (n=6)

DH-DLBCL n=7

2 CRs (29% CR rate)\*
1 on treatment for 3.6 years
1 on treatment for 2.3 years

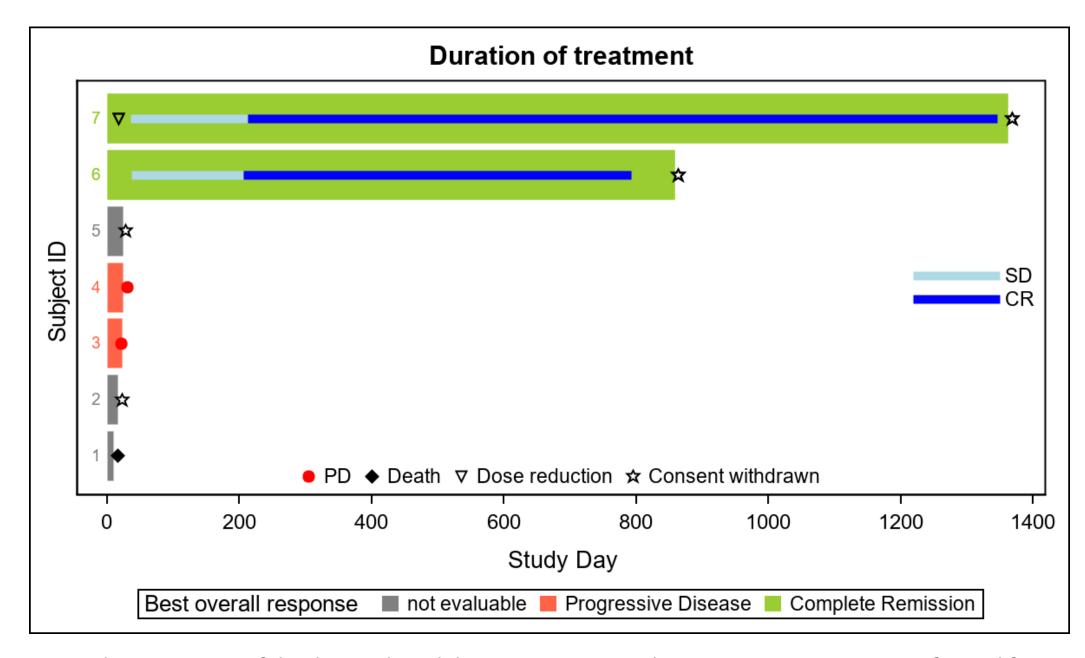


<sup>\*</sup>Per investigator assessment

## Clinical Activity in Ph1 Dose Escalation with VIP152 – all comers

## **Background**

- 30 subjects with various therapy-refractory solid tumors were treated as part of the dose-escalation. No biomarker was used for selection.
- The treatment was generally well-tolerated with neutropenia as the only Grade 4 toxicity.
- Seven subjects had stable disease, including ovarian, pancreatic, and salivary gland cancers.
- Stable disease was seen across all the dose cohorts.


## **Duration of Stable Disease by Malignancy Type**

| Type of malignancy                                  | Dose (mg) | Last dose<br>(cycle) | Months on<br>Tx |
|-----------------------------------------------------|-----------|----------------------|-----------------|
| OVARIAN                                             | 5         | C3                   | 1.9             |
| APPENDIX CANCER                                     | 10        | C5                   | 2.8             |
| NASOPHARYNGEAL                                      | 22.5      | C3                   | 1.7             |
| PANCREATIC<br>ADENOCARCINOMA                        | 22.5      | C3                   | 1.9             |
| CLIVAL CHORDOMA                                     | 22.5      | C4                   | 2.6             |
| MALIGNANT<br>NEOPLASM OF<br>MAJOR SALIVARY<br>GLAND | 22.5      | C24                  | 16.8            |
| PANCREATIC<br>ADENOCARCINOMA                        | 30        | C14                  | 9.5             |

Sources: 24Nov2020 Data, ADRS. Listing 14.2 /4; ADCE



# Clinical Efficacy and Long-term DoR in DHL (n=7)

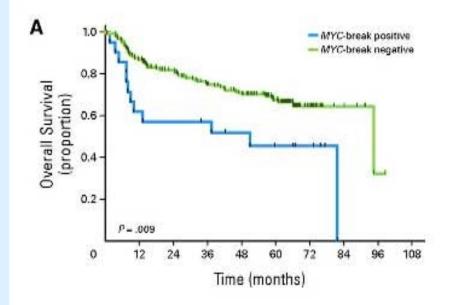


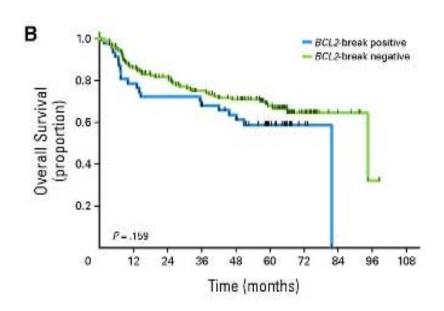
2 CRs (29%) on treatment for:

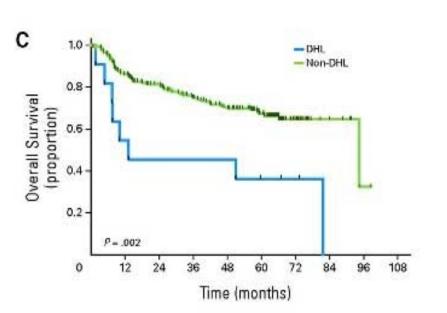
- 3.7 years
- 2.3 years

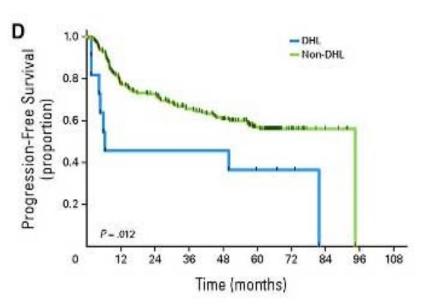
Subject 1: Cause of death was clinical disease progression; however, scans were not performed for response criteria determination. Subjects 2 and 5: Clinical progression and withdrawal by subject.




## Poor Prognosis in Double-hit Lymphoma


## Double-hit (DH)-DLBCL


- Activation of MYC and BCL2/BCL6 genes
  - Rearrangements
  - Overexpression
- 25% of r/r-DLBCL<sup>1</sup>
  - Median PFS 11 months<sup>2</sup>
  - Median OS 22 months<sup>2</sup>


R-CHOP in unselected DLBCL pts: >80% reach a PFS of 6-year<sup>(3)</sup>

- 1. Tumati et al Int J Radiation Oncol Biol Phys 2018;100:1126-32
- 2. Petrich et al Blood 2014:124:2354-61
- 3. Pfreundschuh et al Lancet Oncol 2011:12:1013-22









Overall survival (OS) and progression-free survival (PFS) after treatment with rituximab, cyclophosphamide, vincristine, doxorubicin, and prednisone in patients with diffuse large B-cell lymphoma (DLBCL) harboring gene breaks in MYC, BCL2, or both. Kaplan-Meier curves of (A) OS in 21 patients with DLBCL who were positive for MYC breaks versus 168 patients with DLBCL who were negative for MYC breaks show this cytogenetic aberration to be significantly associated with inferior OS (P = .009). Kaplan-Meier curves of (B) OS in 47 patients with DLBCL who were positive for BCL2 breaks versus 144 patients with DLBCL who were negative for BCL2 breaks show no significant association with OS (P = .159). Kaplan-Meier curves of OS (C) and PFS (D) in 11 patients with double-hit lymphoma (DHL) versus 180 patients with non-DHL DLBCL show that combined breaks in MYC and BCL2 are significantly associated with inferior OS (P = .002) and PFS (P = .012).

Published in: Green et al JCO 2012;30: 3460-67 Copyright © 2012 by American Society of Clinical Oncology

## **Potential Indications**

MYC and MCL1 overexpression is a hallmark of multiple aggressive, resistant tumors representing a wide-ranging unmet medical need

# B-cell Lymphoma MYC dependent (DH-DLBCL, Transformed FL, RS, blastoid MCL)

- Broad sensitivity to VIP152 across NHL cell panel & clinical activity in DH-DLBCL
- Opportunity for significantly improving responses by combining BTK (acalabrutinib) or BCL-2 (venetoclax)

# Leukemias MCL1 Dependent (CLL, AML, MDS)

- Initial indication double refractory CLL (potential AA); potential front-line with BTK/BCL2 inhibition
- Potential combinations (eg, BCL2 or FLT3 inhibitors) in AML

# Myeloma highly expresses and is dependent on MCL1 & CDK9 for survival (MM)

Opportunity for significantly improving responses by combining with SOC

### **Solid Tumors**

(ovarian, TNBC, CRPC incl NEPC)

- MYC and MCL1 driven solid tumors
- Opportunity for addressing drug-resistance by combining with SOC



## VIP152: Two Phase 1b Study Designs – Multiple Shots on Goal

Arm 1 R/R Aggressive Lymphoma (n=30) DHL, Transformed follicular lymphoma, and Blastoid mantle cell lymphoma Phase 1b expansion cohort in MYC-driven advanced cancers Arm 2 **Advanced Solid Tumors (n=40)** Ovarian cancer, Triple-negative breast cancer, Neuroendocrine castration-resistant prostate cancer, and tumor agnostic **CLL** relapsed/refractory to Venetoclax AND BTKi (n=20) Phase 1b dose escalation in R/R CLL & Richter syndrome R/R **Richter syndrome** (n=20) MYC aberration required

- ❖ Arms 1 and 2: FoundationOne or locally confirmed MYC overexpression/translocation to enroll
- Each group within each arm will be evaluated separately for safety and efficacy
- ❖ May move forward to Phase 2 if ORR (investigator assessed) is 20%-30% for a specific indication



## **Summary: PTEFb Portfolio**



### DIFFERENTIATED

PTEFb INHIBITORS
WITH BROAD
CLINICAL POTENTIAL

### ROBUST

PRECLINICAL IN VIVO AND IN VITRO DATA

### CLEAR

DEVELOPMENT PATHS IN HIGH UNMET MEDICAL NEEDS

### **EARLY SIGNS**

OF SINGLE-AGENT CLINICAL EFFICACY

### **FAVORABLE**

PHARMACOLOGY AND PHARMACODYNAMIC PROFILE

### SIGNIFICANT

COMMERCIAL POTENTIAL ACROSS INDICATIONS

### IP PROTECTION

UNTIL 2033 (POTENTIAL FOR EXTENSION)



# BIOCONJUGATION PLATFORM

VIP236 (SMDC) VIP943 (CD123) VIP924 (CXCR5)



# Targeted Small Molecule Drug Conjugate (SMDC) Technology

VIP236 is an SMDC that

- targets the tumor microenvironment (TME)
- is activated by the tumor stroma

## Targeting moiety

linker enabling TME specific release of active payload

## Payload

### $\alpha_v \beta_3$ integrin binder

- Stable non-peptidic ligand
- Proven tumor homing

## **Extracellular cleavage in tumor stroma**

- Neutrophil elastase cleavable linker
- The non-cleavable isomer is inactive

### **Modified camptothecin (CPT)**

 Drug profile tailored for high permeability and low efflux

### <u>α<sub>v</sub>β<sub>3</sub> integrins</u>

Play a critical role in the TME in:

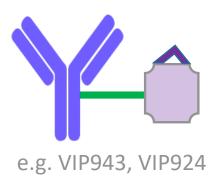
- Tumor progression & metastasis
- Resistance to cytotoxic therapy
- Recruitment of immune/inflammatory cells.

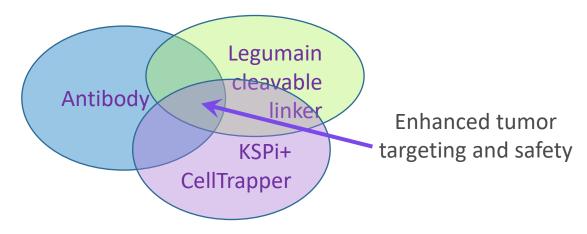
### **Neutrophil elastase**

Belongs to a family of proteases that contribute to cancer progression. Its overexpression in the TME is associated with

- Tumor evasion
- Metastasis

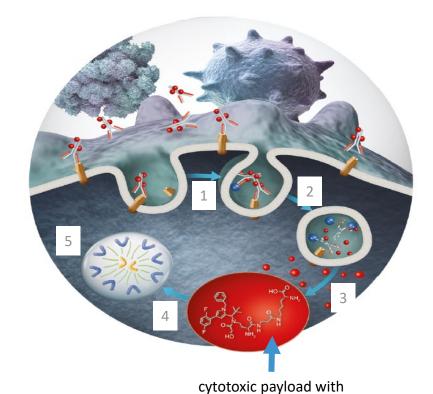
### **Modified CPT**


Optimized to increase potency on mitotic cancer cells


The expression levels of  $\alpha_v \beta_3$  integrins and neutrophil elastase are associated with aggressive disease in many cancers.



# KSPi-Antibody Drug Conjugate Technology


## **Enhances Therapeutic Potential**





## **ADCs** tuned for tumor specific payload release

| Components                                           | Features                                                                | Advantages                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Antibody                                           | Abundant targets                                                        | Tumor selectivity                                                                                                                                                                                                                                                                                   |
| <ul><li>Legumain-<br/>cleavable<br/>linker</li></ul> | Cleaved by a very specific lysosomal (low pH) asparaginyl endopeptidase | <ul> <li><u>Tumor selectivity</u>: Legumain is overexpressed in tumors vs normal and associated with poor prognosis</li> <li><u>No non-specific cleavage</u>: Unique cleavage sequence and low pH required</li> <li><u>Flexibility</u> to adapt linker to specific clinical applications</li> </ul> |
| KSP inhibitor                                        | A novel, high potency<br>MoA payload specific for<br>dividing cells     | <ul> <li>Low/no toxicity in non-dividing cells, no neurotoxicity</li> <li>Potential to induce immunogenic cell death</li> </ul>                                                                                                                                                                     |
| <ul> <li>CellTrapper™</li> </ul>                     | Reduces payload cell membrane permeability                              | <ul> <li>Chemical moiety that is part of the KSPi payload</li> <li>Trapped KSPi payload concentrates in tumor cells</li> <li>Released payload cannot enter healthy cells</li> </ul>                                                                                                                 |



# VIP943 Mechanism of action anti-IL3Ra KSPi-ADC

CellTrapper<sup>™</sup> moiety enabling tumor accumulation

- VIP943 binds to IL3RA on surface of cell and gets internalized
- 2. Endosome fuses with lysosome: legumain digestion, release of cytotoxic payload containing a cell trapper moiety
- 3. Cytotoxic payload (KSPi) enters cytoplasm
- 4. KSPi inhibits spindle apparatus (KSP, Eg5)
- 5. Mitotic catastrophe



# **Expected Upcoming Milestones**

| Program                       | 2021 | 2022                                                                                           | 2023                            | 2024 |
|-------------------------------|------|------------------------------------------------------------------------------------------------|---------------------------------|------|
| Clinical Programs             |      | Multiple Ph2                                                                                   |                                 |      |
| VIP152<br>CDK9 inhibitor (IV) |      | DHL  MCL post BTK  CLL post VEN, BTK  Richter's Syndrome  Ovarian  NEPC  MYC dep. solid tumors |                                 |      |
| VIP236<br>SMDC                |      | ND in Solid Tumors                                                                             |                                 |      |
| VIP943<br>IL3RA               |      | IN                                                                                             | ID in hematologic malignancies  |      |
| VIP924<br>CXCR5               |      |                                                                                                | IND in hematologic malignancies |      |



## **Vincerx Summary**



# A strong management team with a proven track record of successes

- Publicly traded company (PCYC): Co-development w JNJ, \$1B; Sale to Abbvie, \$21B
- Private company (Acerta) founded company on preclinical asset and took it to approval and sale of company: M&A \$7B, AZN
- >20 years of experience in CDK9 space
- >10 years of ADC development experience from discovery to clinical development

# De-risked clinical pipeline, multiple shots on goal

- Clinical stage asset with clinical POC single agent remissions (>2y) in a very aggressive disease (DH-DLBCL)
- Accelerated Approval opportunities as a potential bestin-class monotherapy – strong commercial potential in oncology
- Safety profile will support future combination studies
- Clinical data 1H2022 or earlier and Ph2s by end of 2022

### Innovative, next-generation bioconjugation platform

- Modular technology designed to address specific challenges of current ADCs in the clinic
- KSPi-ADC safety profile has been de-risked in cyno tox studies with potential first-in-class & best-in-class opportunity
- SMDC is ready for IND 1H2022, ADCs 1H2023

